FTB Manufacturing Co., Ltd.

MTG-63/100 RS485 Modbus RTU

Communication User's Manual

Version 1.00

May 2025

Page 1 of 11 | May 2025

Table of Contents

1. Basic Specifications	3
2. Modbus RTU Communication	3-4
3. Pressure Settings	5-6
4. Pressure Unit Setting	6
5. Baud Rate	7
6. ID Setting	7
7. Zeroing Setting	7
8. Zeroing Range Setting	7
9. Pressure Calibration	8
10. Hysteresis (HYS) Pressure, (HYS) Time, and Alarm Modes (ALT (0-4)8-10
11. NPN/PNP Switch Description	10
12. ID and Baud Rate return to Factory Default Settings	10
13. Wiring Diagram for 4–20mA Output	11

1. Basic Specifications

- 1-1. Operating Voltage: DC 22–26V.
- 1-2. Environmental Conditions:
 Operating Temperature Range: 5°C to 50°C.
 Operating Humidity Range: 5% to 85% RH.
 Storage Temperature: -20°C to 85°C.
- 1-3. Communication Protocol: Modbus RTU.
- 1-4. Pressure Output: Analog output of 4–20mA for pressure values.
- 1-5. NPN Open Collectors: 5 modes to choose from (NO/NO), (NO/NC), (NC/NC), (NC/NO), and OFF.

2. Modbus RTU Communication

- 2-1. Communication Format: Each data frame consists of 8 data bits, no parity, and 1 stop bit.
- 2-2. Response Time: 20ms response delay after receiving a complete packet.
- 2-3. Data Access: Only one register can be read or written at a time during communication.
- 2-4. Pressure Reading Procedure: Read the integer part of the pressure value first, followed by the decimal part.
- 2-5. When the pressure value (integer) is read, the pressure value (decimal) is updated synchronously.
- 2-6. Registers

Address	Register	(R/W)	Range	Data Type	Default	Memory
0x0000	Pressure Value (integer)	R	-1000~30000	16-bit integer	X	Х
0x0001	Pressure Value (decimal)	R	-9999~9999	16-bit integer	Х	х
0x0002	Zeroing Range Setting	R/W	0~15	16-bit integer	0	v
0x0003	Positive Pressure Units	R/W	0~9	16-bit integer	0(kg/cm ²)	v
0x0004	Negative Pressure Units	R/W	0~9	16-bit integer	9(blank)	v
0x0005	Gauge Maximum Value	R/W	0~30009	16-bit integer	40	v
0x0006	Gauge Minimum Value	R/W	-1000~0	16-bit integer	0	v
0x0007	Gauge Type	R/W	0~2	16-bit integer	0	v
0x0008	Pressure Calibration	R/W	-1000~1000	16-bit integer	0	v
0x0009	Alarm Mode	R/W	0~4	16-bit integer	<mark>4</mark>	v

MTG-63/100 | User's Manual

0x000A	Alarm1 (integer)	R/W	-30000~30000	16-bit integer	<mark>15</mark>	V
0x000B	Alarm1 (decimal)	R/W	-9999~9999	16-bit integer	0	V
0x000C	Alarm2 (integer)	R/W	-30000~30000	16-bit integer	<mark>15</mark>	V
0x000D	Alarm2 (decimal)	R/W	-9999~9999	16-bit integer	0	v
0x000E	Hysteresis pressure (integer)	R/W	0~30000	16-bit integer	0	v
0x000F	Hysteresis pressure (decimal)	R/W	0~9999	16-bit integer	0	v
0x0010	Hysteresis time (second)	R/W	0~15	16-bit integer	0	v
0x0011	ID	R/W	0~255	16-bit integer	255	v
0x0012	Baud Rate	R/W	0~2	16-bit integer	1	V
0x00FF	Zeroing Setting	W	1	16-bit integer	Х	V

2-7. Data Reading (Function Code = 03):

HMI → Inquire Pressure Gauge ID 1 (Pressure Value - integer)

ID	Function	Address-H	Address-L	Data of Length	CRC-L	CRC-H
0x01	0x03	0x00	0x00	0x01	0x84	0x0A

Pressure Gauge ID 1 → reply to HMI current (Pressure Value - integer) =1000 (Data-H + Data-

L=0x03E8=1000)

ID	Function	Number of Byte	Data-H	Data-L	CRC-L	CRC-H
0x01	0x03	0x02	0x03	0xE8	0xFA	0x72

2-8. Data Writing (Function=06):

HMI → Set Pressure Gauge ID 1 (Positive Pressure Unit) =BAR

ID	Function	Address-H	Address-L	Data-H	Data-L	CRC-L	CRC-H
0x01	0x06	0x00	0x04	0x00	0x01	0x09	0xCB

Pressure Gauge ID 1 \rightarrow Reply to HMI Positive Pressure Unit set BAR

ID	Function	Address-H	Address-L	Data-H	Data-L	CRC-L	CRC-H
0x01	0x06	0x00	0x04	0x00	0x01	0x09	0xCB

3. Pressure Settings

- 3-1. Positive Pressure Setting
 - 3-1-1. Gauge Type = 0 (Positive Pressure).
 - 3-1-2. The minimum pressure value is forced to zero, and the negative pressure unit is forcibly set to blank.
 - 3-1-3. The maximum pressure value is 40 by default, and the positive pressure unit is kg/cm2 by default.
 - 3-1-4. The maximum value can be set in the range of 0~30009.

Example:

• The maximum value =30000; the maximum pressure value =30000.

Example:

- The maximum value =30001~30009 meaning the maximum pressure value = (30001-30000) * 0.1~0.9 = 0.1~0.9.
- 3-1-5. Pressure values from 0.1 to 0.9 are rounded to 4 decimal places.

Pressure values from 1 to 99 are rounded to 3 decimal places.

Pressure values from 1000 to 9999 are rounded to 2 decimal places.

3-2. Negative Pressure Setting

- 3-2-1. Gauge Type = 1 (Negative Pressure).
- 3-2-2. The maximum pressure value is forcibly set to zero, and the positive pressure unit is forcibly set to blank.
- 3-2-3. The maximum pressure value is -76 by default, and the negative pressure unit is cmHg by default.
- 3-2-4. The minimum value can be set in a range of -1000~0.
- 3-2-5. Pressure values from -1-99 are rounded to the 3rd. decimal place.Pressure values from 100-1000 are rounded to the 2nd. decimal place.
- 3-2-6. When adjusting the negative pressure unit, the default value of the minimum value is as follows:

Unit	kg/cm ²	bar	psi	mpa	kpa	inHg	cmHg	mmHg	mbar
Default	-1	-1	-15	-1	-100	-30	-76	-760	-1000

- 3-3. Compound Pressure Setting
 - 3-3-1. Gauge Type = 2 (Compound Pressure).
 - 3-3-2. There are only the following unit settings, the default is kg/cm2 with negative pressure unit cmHg:
 - 3-3-2-1. The positive pressure unit kg/cm² is paired with the negative pressure unit: cmHg or mmHg or inHg or mbar or kg/cm².
 - 3-3-2-2. The positive pressure unit psi is paired with the negative pressure unit inHg.
 - 3-3-2-3. The positive pressure unit bar is paired with the negative pressure unit bar or mbar or inHg.
 - 3-3-2-4. The positive pressure unit mbar is paired with the negative pressure unit mbar.
 - If you select the wrong unit, the program will automatically set it to the correct unit.
 - If kg/cm2 is selected for positive pressure, but inHg is selected for negative pressure, the program will set the negative pressure to cmHg.
 - If bar is selected for positive pressure, but cmHg is selected for negative pressure, the program will set the negative pressure to bar.
 - 3-3-3. The range can be set between 0~30009.
 - 3-3-4. The minimum value of the gauge is fixed according to the negative pressure unit and cannot be adjusted.

cmHg is -76; mmHg is -760; inHg is -30; bar is -1; kg/cm2 is -1; and mbar is -1000.

3-3-5. The pressure values are rounded to the 2nd decimal place.

Unit	kg/cm ²	bar	psi	mpa	kpa	inHg	cmHg	mmHg	mbar	Blank
										(none)
Setup	0	1	2	3	4	5	6	7	8	9
code										

4. Pressure Unit Setting

MTG-63/100 | User's Manual

5. Baud Rate

- 5-1. Default Baud Rate 19200
- 5-2. Baud Rate Setting 0=9600, 1=19200, 2=38400

6. ID Setting

- 6-1. Default ID 255
- 6-2. Total 256 IDs (0~255)

7. Zeroing Setting

7-1. Transmit the following code, reset to zero.

ID	Function	Address-H	Address-L	Data of Length	CRC-L	CRC-H
0x01	0x06	0x00	0xFF	0x01		

8. Zeroing Range Setting

- 8-1. Default = 0
- 8-2. Range 0~15, 1~15 represents 1~15%

Example:

Positive pressure at zeroing range 10 on the maximum value of 4kg/cm².
 4 * 10% = 0.4 kg/cm² -> 0 to 0.4 kg/cm² considers zero.

Example:

• Negative pressure at zeroing range 10 on the maximum value of -76 cmHg.

-76 * ±10% = -7.6 cmHG -> -7.6 to 0 cmHg considers zero.

Example:

 Compound pressure at zeroing range 10 on the minimum value of -76 cmHg and maximum value of 1kg/cm²

Positive Pressure: 1 * 10% = 0.1 kg/cm²

Negative Pressure: -76 * 10% = -7.6 cmHG

0.1 kg/cm² to -7.6 cmHG considers zero.

MTG-63/100 | User's Manual

9. Pressure Calibration

- 9-1. Default Setting: Calibration Value = 0.
- 9-2. Range: -1000 to 1000, representing -1000% to 1000% correction.
- 9-3. Constraint: The calibrated pressure value must not exceed the maximum or minimum values of the gauge pressure.

Examples:

- Positive Pressure (0 to 10 kg/cm², -15% correction):
 - Measured pressure: 1 kg/cm² \rightarrow Calibrated: 1 + (-0.15 \times 10) = 0 kg/cm²
 - Measured pressure: 9 kg/cm² \rightarrow Calibrated: 9 + (-0.15 \times 10) = 7.5 kg/cm²
- Positive Pressure (0 to 10 kg/cm², +15% correction):
 - Measured pressure: 1 kg/cm² → Calibrated: 1 + (+0.15 \times 10) = 2.5 kg/cm²
 - Measured pressure: 9 kg/cm² \rightarrow Calibrated: 9 + (+0.15 \times 10) = 10 kg/cm²
- Negative Pressure (-76 to 0 cmH_2O , -15% correction):
 - Measured pressure: -70 cmH₂O \rightarrow Calibrated: -70 + (-0.15 × -76) = -58.6 cmH₂O
 - Measured pressure: -10 cmH₂O \rightarrow Calibrated: -10 + (-0.15 × -76) = 0 cmH₂O
 - Measured pressure: -30 cmH₂O \rightarrow Calibrated: -30 + (-0.15 × -76) = -18.6 cmH₂O
- Negative Pressure (-76 to 0 cmH₂O, +15% correction):
 - Measured pressure: -70 cmH₂O \rightarrow Calibrated: -70 + (+0.15 × -76) = -76 cmH₂O
 - Measured pressure: -10 cmH₂O \rightarrow Calibrated: -10 + (+0.15 × -76) = -21.4 cmH₂O
 - Measured pressure: -30 cmH₂O \rightarrow Calibrated: -30 + (+0.15 × -76) = -41.4 cmH₂O
- Compound Pressure (-76 cmH₂O to 35 kg/cm², -1% correction, fixed offset of 0.01 kg/cm²):
 - Measured pressure: -0.76 cmH₂O \rightarrow Calibrated: -0.76 + (0.01 × 1) = 0 cmH₂O
 - Measured pressure: 35 kg/cm² \rightarrow Calibrated: 35 + (0.01 \times 1) = 35 kg/cm²
- Compound Pressure (-30 in H_2O to 15 psi, 1% correction, fixed offset of 0.01 psi):
 - Measured pressure: -0.02 inH₂O \rightarrow Calibrated: -0.02 + (0.01 × 1) = 0 inH₂O
 - Measured pressure: 10 psi \rightarrow Calibrated: 10 + (0.01 \times 1) = 10.01 psi

10. Hysteresis (HYS) Pressure, (HYS) Time, and Alarm Modes (ALT 0-4)

- ※ HYS stands for HYS pressure, and X seconds stands for HYS time.
- 10-1. ALT. 0 (OFF) Mode:
 - NPN/PNP switches remain OFF (R1/R2 OFF).

10-2. ALT. 1 (NC/NO) Mode:

R1 ON:

Pressure > AL1: Switch ON.

Pressure < (AL1 - HYS): After X seconds delay, switch OFF.

R2 ON:

Pressure < (AL2 + HYS): After X seconds delay, switch OFF.

Pressure < AL2: Switch ON.

		R2 ON
ALt.1	(AL1-H) AL1	AL2 (AL2+H)
	$\label{eq:constraint} \lceil \text{CV}_{\lrcorner} \geqq (\texttt{AL1}) \rightarrow \texttt{R1}/\texttt{AL1} \text{ ON } \ ; \ \lceil \text{CV}_{\lrcorner} < (\texttt{AL1} - \texttt{H}) \rightarrow \texttt{R1}/\texttt{AL1} \text{ OFF}$	$\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{constraint} \label{eq:constraint} \label{eq:constraint} \label{constraint} \label{eq:constraint} \label{constraint} constrai$

10-3. ALT. 2 (**NO/NC**) Mode:

R1 ON:

Pressure > AL1: After X seconds delay, switch OFF.

Pressure < (AL1 - HYS): Switch ON.

R2 ON:

Pressure > (AL2 - HYS): Switch ON.

Pressure < (AL2 - HYS): After X seconds delay, switch OFF.

	R1 ON	R2 ON		
ALt.2	(AL1-H) AL1	AL2 (AL2+H)		
	$\label{eq:constraint} \lceil CV \lrcorner < (AL1 \cdot H) \to R1/AL1ON; \ \lceil CV \lrcorner \geqq \lceil AL1 \lrcorner \to R1/AL1OFF$	$\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{constraint} \label{eq:constraint} eq:constrai$		

10-4. ALT. 3 (NC/NC Switch) Mode:

R1 ON:

Pressure > AL1: Switch OFF.

Pressure < (AL1 - HYS): After X seconds delay, switch ON.

R2 ON:

Pressure > AL2: Switch OFF.

Pressure < (AL2 - HYS): After X seconds delay, switch ON.

	R1 ON	R2 ON	
ALt.3	(AL1-H) AL1	(AL2-H) AL2	
	$\label{eq:constraint} \begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} eq:const$	

10-5. ALT. 4 (NO/NO) Mode:

R1 ON:

Pressure > AL1: Switch ON.

Pressure < (AL1 - HYS): After X seconds delay, switch OFF.

R2 ON:

Pressure > AL2: Switch ON.

Pressure < (AL2 - HYS): After X seconds delay, switch OFF.

ALt.4	(AL1-H) AL1	(AL2-H) AL2
	$\label{eq:cv_j} \ensuremath{^{\Gamma}\text{CV}_{J}} \geq (\text{AL1}) \rightarrow \text{R1/AL1}\text{ON};\ensuremath{^{\Gamma}\text{CV}_{J}} < (\text{AL1}\text{-}\text{H}) \rightarrow \text{R1/AL1}\text{OFF}$	$\label{eq:relation} ^{\!$

11. NPN/PNP Switch Description

- 11-1. Schematic diagram of the switch:
- NPN Switch

		24	
	PNP		
		-	

PNP Switch

12. ID and Baud Rate Return to Factory Default Settings

- 12-1. Before supplying power, connect Reset to GND.
- 12-2. After power is supplied, the ID will be reset to 255, and the Baud Rate will be reset to 1 (19200).

13. Wiring Diagram for 4–20mA Output